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use. . Yet, the finite difference approach is well known for its cumbersome computational
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even on the fastest computers available today.

The heavy computation requirements of the finite difference type methods are created by the
necessity of refining the numerical grid proportionately to the wavelengths of interest in

all spatial directions, including regions of constant material properties. For problems

involving wave propagation in irregular layers of constant material properties within each .
layer, however, the Boundary Integral Equation (BIE) approach provides a more concise and

efficient formulation.
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1.0 INTRODUCTION

(i

-

I

I 1.1 Review of Literature ;"

é g | | | A
. The efficient numerical propagation of  waves in complex '.:'.",.:.:"
three-dimensionally varying environments has been a problem of ::-_’_
l ' considerable geophysical interest over the past few years, yet has T
; proven extremely difficult even for the case of acoustic wave JES‘:*
‘f propagation in two dimensional structures. This is primarily due to the {\_X
. SN

fact that although the differential equations of motion are linear in the v

field quantities of interest, they are non-linear in terms of the

boundary conditions for most realistic structures. This fundamental
nonlinearity preciludes construction of the solution for complex
structures by superposition of the solutions for simple structures, and

forces one into computationally costly schemes.

Techniques for dealing with this fundamental nonlinearity have spanned
the range from the crudest classical ray tracing approach to the
. computational-bound finite difference type methods. However, no single

technique has ever proven entirely satisfactory for redasons of accuracy,

completeness of solution, generality of application, cost or combinations
) thereof. For example, in cases where significant diffraction and
. interierence effects require "exact" solutions, finite difference
techniques have received widespread use. Yet, the finite difference
approach is well known for its cumbersome computational demands in two

dimensions and almost insurmountable computational demands in three

) dimensions even on the fastest computers available today.

The heavy computation requirements of the finite difference type

methods are created by the necessity of refining the numerical grid
‘ . proportionately to the wavelengths of interest in all spatial directions,
) including regions of constant material properties. For problems
- involving wave propagation in irregular layers of constant material
j' properties within each layer, however, the Boundary Integral Equation

) (BIE) approach provides a more concise and efficient formulation.

- SGI-R-85-120




Basically, the BIE formulation takes advantage of the fact that the
propagation of waves through a region of constant material properties
can be treated analytically, leaving only the interactions at the
bounding surfaces to be treated numerically. Rather than imposing a
grid over the entire volume, the BIE method only requires gridding of
the interfaces between regions of constant material properties. Not

only are there potential savings in computational effort to solve a

s f W s A N R PP

smaller system of equations, but the formulation represents a concise
treatment of the pertinent physics involved. By virtue of this
contraction of information, the smaller matrices in the BIE approach are
' much denser than the corresponding matrices in the finite difference
approach. These dense matrices are typically poorly conditioned and
must be given careful consideration during implementation of matrix

solution techniques to avoid numerical instabilities.

Various techniques have appeared in the literature for dealing with the
dense matrices in the BIE approach. One technique involves
introduction of a Kirchhoff approximation into the BIE formalism (eg.,
I Berryhill, 1979; Scott and Helmberger, 1982; Mellman, et al., 1982). In
the Kirchhoff approximation the interaction between neighboring points
on a boundary is ignored by locally approximating the boundary at each
sample point by the tangent plane at that point and then using plane
' wave reflection and transmission coefficients to compute the unknown
. boundary wvalues. Even with the Kirchhoff approximation, one is still
confronted with the denseness of the matrices used to propagate the
boundary values forward to the desired positions. Furthermore, and of

utmost importance, is the fact that this decoupling of neighboring

T T

boundary points in the Kirchhoff approximation precludes simulation of
head waves, surface waves, most diffraction effects and any other
dynamic effects related to multiple interactions of the wavefield with a

) singte interface.

A time domain treatment of the full system of equations has been
addressed by Cole (1980) f(r two-dimensional acoustical problems in
.' geophysics. Cole's approach becomes expensive at high frequencies or

for late arriving signals as the product of the frequency step times the
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time step must be less than about 10 to maintain stability. More :‘:_’{::::
importantly, the formulation does not handle the dense matrices -

efficiently, precluding generalization to three-dimensional elastic Sy
multilayered problems. Aiso, it is difficult to include realistic material T
attenuation and to suppress late arriving spurious reflections off the ‘

artificial extremities of the grid using a time domain formulation. N f::.-{'
. ;ﬁi.‘"

Ferguson (1982) studied two-dimensional elastic problems using a vy

frequency-domain BIE treatment in which the unknown boundary values
are expanded in a series of plane waves with unknown amplitudes
determined by performing enormous matrix inversions at each ;,.A;'"';
frequency/wavenumber pair to satisfy the boundary conditions.
Although realistic attenuation is included, the computational cost of

Ferguson's approach is at least an order of magnitude targer than finite

) difference type methods and provides incorrect results for problems

involving interfaces with slopes exceeding about 60 degrees. D

: Schuster (1984) has formulated a frequency domain BIE approach based
i on first solving a set of smaller uncoupled singular boundary integral
equations for the individual primary responses of each interface and
then coupling them together by successive iterations using a Neumann

series perturbation treatment. Schuster's method is stable, accurate,

I nicely convergent and increases in cost linearly with the number of
layers, yet the algorithm still requires large matrix inversions for the
individual self-interaction operators preventing a cost-competitive ;-_'. f:".

alternative to finite diffrence methods.

Apsel, et al., (1983) formulated a frequency domain BIE approach in et
which there are no matrix inversions, realistic attenuation is included,
the method is stable and accurate and the algorithm is significantly
more cost-effective than finite difference type algorithms. A ;_',,:-;'.::‘
fundamental ingredient in the formulation is the realization that the e
integrable singularities in the self-interaction operators along each SR

interface have the same convolutional form as those for a flat reference

plane. Then instead o!f perturbing the entire primary response of the

individual interfaces as in Schuster's approach (1984), the exact solu-
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tion including all kinematic and dynamic effects is obtained
iteratively from the singular seif-interaction responses using a specially
designed perturbation treatment guaranteed to be wuniformly and
optimally convergent. All matrix inverse operations are reduced to
simple deconvolutional operations, which are efficiently handied using

Fast Fourier Transform algorithms.
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1.2 WORK COMPLETED TO DATE

PR AN '..'-(.-""' N T P S NP S 8
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The BIE formulation prasented in Section 4.1 of Apsel et al. (1983) has
been implemented for 2-D multilayered acoustic geclogic structures.

There were two significant problems with the original implementation.

First, the Neumann series iterative procedure exhibited poor and often
non-existent convergence for models departing even moderately from the
flat reference planes. The second problem was the presence of
spurious edge reflections for models with interfaces that failed to return
to the depths of the reference planes near the horizontal model

extremes.

To address the convergence problems, it was necessary to make four
improvements to the simpife Neumann series iterative procedure. The
first improvement was to express the boundary values at the n-th
iteration, Xn, as a series of basis vectors, ¢i, with unknown

coefficients, o,

n
Xn = b3 a; ¢i (1)
i=1
-1 -1 -1
in  which . = ([C][A)) [C]{F}. The unknown coefficients at
the n-th iteration (or1, Anr vvny an) are determined by minimizing the

residual in the boundary integral equations in a least-squared error
norm. If all the coefficients were determined to be unity, then the
expansion in Eq. (1) would correspond to the Neumann series solution.
With variable coefficients at each iteration, the method is guaranteed to

be uniformly convergent in the absence of numerical roundoff.

The second improvement was to orthogonalize and normalize the basis
vectors in Eq. (1) in order to more rapidly span the solution space.
This resulted in approximately a 20 percent improvement in the overall

convergence rate.

SGi-R-85-120
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The third improvement was lo implement an automatic restart on the
iteration loop to: eliminate the potential roundoff problems; reduce the
cost of the least-squares operation at each iteration by limiting the
number of iterations to ten per pass; and increase the rate of
convergence by iterating on differences of boundary values from
previous passes rather than directly on the boundary values. This
resulted in approximately a 10 percent improvement in the overall

convergence rate.

The fourth improvement was to use the boundary values from previous
frequencies to achieve a better starting solution than [C]-1{F} at the
current frequency. This resulted in approximately a 20 percent
reduction in the number of iterations. A further improvement would be
possible using more sophistic ited extrapolation and phase unwrapping
techniques to more closely predict the boundary values at the current

frequencies from the boundary values from previous frequencies.

Even though these four improvements provided a much more reliable
algorithm, the convergence was still far too slow for models with
moderate aor large perturbations in interface depths from the flat

reference planes.

The second problem area related to spurious edge effects was addressed
by padding the models by at ieast ten percent at both horizontal
extremes and applying tapers in the spatial domain to suppress edge
reflections. Wrap-around events in the spatial domain caused by the
discrete inverse Fourier transforms in the wavenumber deconvolution
step alt each iteration wetre completely suppressed by simple padding in
the wavenumber domain. Also, potential ringing from the finite Fourier
transforms was suppressed by applying tapers at large wavenumbers for
the inverse transforms and in the spatial taper zones for the forward

transforms.
This combination of tapering and padding was very effective at

eliminating spurious edge effects except for models with non-zero relief

from the reference planes near the edges of the interfaces. These

SGI-R-85-120
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remaining spurious effects and the inadequate rate of convergence are o
being addressed in the work currently in progress as discussed in ;f;:
Section 1.3. The original approach with the flat reference planes is Lov
described in more detail in Section 2.1 and the current work is i::-;:
described in more detail in Section 2.2. \
::w-:

Throughout the project, rigorous internal and external wvalidations of ar
the algorithm have been performed. The results from some of the most é;f,}-_‘
important validations using the original approach are presented in b
Section 3.1. Also, some preliminary results on simple models for AFGL :f:::::
S

are presented in Section 3.2.

SGI1-R~-85-120
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1.3 WORK CURRENTLY IN PROGRESS

-~

The outstanding problems discussed in Section 1.2 on the inadequate
rate of convergence and the spurious eage effects for models with
interfaces that did not coincide with the reference planes are currently
being addressed. Both problems were directly related to trying to
handle general models with large perturbations in interface depths with
respect to the reference planes using basically a perturbation approach.

Using the flat layer deconvolutional coefficients to precondition the

;.
i
k'
)
e
g
e
ﬁ
3
o
b
b

system of equations did not improve the rate of convergence for models
with large perturbations and did not solve the edge effects problem for
those models with edge perturbations from the flat reference planes.

To address both problems, the new formulation has eliminated the
dependence on the reference planes to suppress edge reflections and an
improved iterative solution technique is being implemented to replace the
old technique. in the new method, the models are padded at the
horizontal extremes with a thin absorption zone at least twenty samples
wide in which the forcing functions and integration quadrature
coefficients are exponentially tapered to zero at the edges to suppress
the spurious edge reflections. The tapers are applied in the frequency
domain by prescribing Q values that are tapered to neary zero in the
absorption zone. This is similar to the work of Cerjan, et al. (1985)
except that the exponential tapers operate only on the amplitudes and

do not affect the phase information.

The improved iterative solution technique is an asymmetric conjugate
direction method with an iteration restart capability similar to the
original method and a more sophisticated extrapolation of the boundary
values from previous frequencies to achieve a closer starting guess at
the next frequency. The method is proving to be stable even for the
most complex models with convergence rates on the order of the square
root of the number of samples per interface. The largest improvement

is the more uniform convergence rate provided by more optionally

picking new search directions, whereas the rate of convergence would
slow down considerably when approaching the true solution in the

previous method.
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1.4 WORK PLANNED FOR THE NEXT 12 MONTHS

The first task is to fully test the new iterative solution technique and
new edge reflection suppression techrique in the 2-D acoustic code as
described in Section 1.3. This will involve repeating the internal and
external wvalidation exercises using the upgraded algorithm. Once

successful, wvarious 2-D acoustic simulations of interest to AFGL will be

performed.

The next phase of the project would then be to extend the algorithm to
the 3-D acoustic case and perform more validation exercises and
simulations for 3-D cases. After the 3-D acoustic algorithm is complete,

development will begin on the 3-D elastic algorithm.
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2.0 METHODOLOGY Ty

07
1iels
an

2.1 ORIGINAL BINTEQ FORMULATION

-

a
=l b
'-‘; .
F

J.r"r P
%
22"

The boundary integral equations describing complete wave propagation

through arbitrary three-dimensional elastic multilayered media are

derived in two steps. First, the known characterization of wave

[
NGRS
A
o
N

propagation within a single irregular layer is written in terms of
integral representaticns involving the full space Green's functions with
properties of that layer. Second, the interaction of the wavefield is
simultaneously imposed at all boundaries to satisfy all boundary and
continuity conditions leading to a system of fFredhoim integral equations
of the second kind for the unknown boundary values. Once this
system of equations is solved for the unknown boundary values, the
wavefield may be propagated from the boundaries to all receiver
positions of interest within a given layer using the integral
representations of the first tep. The formulation for the 2-D and 3-D
acoustic cases is analogous to the 3-D elastic case and will not be

repeated here.

The model geometry for the wave propagation probiem solved in the BIE
formulation is depicted in Figure 1 by N irregular layers overlying a
semi-infinite half-space. The layers are allowed to pinchout but not to

cross in this formulation. Each layer is characterized by constant

shear and compressional wave velocities and constant densities.
Realistic material attenuation is introduced by allowing the velocities to =

be complex. Wave propagation within a given layer is expressed in -—-—
terms of the Green's functions for a full-space with the properties of ‘

that layer. The formulation is not restricted to constant material
properties within a given layer, although the Green's functions for that .

case are quite simple. The formulation is carried out for the full

elastic case and the corresponding acoustic formulation is obtainable .
from the derived equations by replacing the vector equations with \‘_;
. A S

scalar equations.
fj':-'_j
SGI-R-85-120 ,-_.:,::;
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boundary S,

boundary S,

boundary S,

l - ‘ - G,'f‘
v

(boundary values
layer 1 at point %)

& Source is located in layer s

layer N+

half - space

Figure 1. Cross-sectional model geometry for layered half-space used
in BIE method formed by N irregular layers overlying a
uniform half-space, with each layer characterized by
constant material properties. The source and receiver can
be located anywhere in the medium.
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The first step in the formulation is to write expressions for the
displacement field within a single layer without consideration of the
boundary interaction. In layer £ (2=1,2,...,N+1), the displacement
vector must satisfy the homogeneous (##s) or inhomogeneous (2=s)
equations of motion (depending on whether or not the source layer s is
the same as layer 2) for a full-space with properties of layer £. The
Representation Theorem of Elastodynamics (see, for example, deHoop,
1958) provides an expressiorn for the displacement vector located any-
where within volume VQ containing layer 2 in terms of integrals of the '
displacement and traction field over the bounding surface of volume V2 l_f:‘*-
times the corresponding Green's functions for a full-space with

properties of that layer. The i-component of displacement at location

;2 can then be written in the frequency domain using the
Representation Theorem for a volume VR bounded by layer interfaces 52
and S

2417

2 > e N g > - 9 > 2 > - g > >
ez vy = -’~ CACIEALCARE NBAIAAI LN

SQ
RO
e
241 > e > AYSNS
-f [ (xzy 2+1)T ( 2+]) = (XQ)YQ+1) (Y2+l)] dS(Y2+1) "_}
Sp+1
g > > > >
+ Gzﬁ]~ [Gji(xg,zﬂ)fj(zz)] av(z,y) (2)
Y (i,j=1,2,3)

2
in which the summation over repeated indices is understood, the

frequency arguments have been omitted for brevity and

>

Y = an integration point on bounding surface Sm; - - :

2 - - . \.‘.:::.

G, . (xQ,ym) = the j-component of the full-space Green's_ e

a2 function displacement vector at location y :.-:.‘-:}
on surface S_ due to poigt force in the S
i-direction at location Xy with properties of —
layer £;

SGi-R-85-120
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Hgi(;z’;m) = the j-component of the corresponding Green's
] function traction vector formed from the
inner-product of the kj-componeni of the -
Green's function stress tensor Gk'i at location y
on surface Sm with the k-compongni of the
unit upward normal vk at point y (summing
over k=1,2,3); n

U".'(;m) = the j-component of displacement at location
J y, °u surface Sm;

TW(; ) = the j-compongnt of the corresponding traction
j 'm . )
at location ym on surface Sln formed from the
inner-product of the kj-component of the
stress tensor with the k-compongnt of the
unit upward normal v at point y (summing
ol k m
over k=1,2,3);

f.(;R) = the j-component of the source function at

J location z, anywhere in layer £ (assuming the
source is a Delta-function in space, then the
volume integral reduces to the evaluation of
the integrand at point 22);

6 = 0, if 1#s

2s 1, if 1=s ,S = source layer number;

1, if g inside layer £
if x, on surface bounding layer £

2.~
e7(xy)
, if xzoutside layer £.

it
[ o

In Eq. (2), the layer comprising volume Vz is assumed to extend to

infinity at the horizontal extremes to eliminate the surface integrals
along those portions of the surface bounding voiume VQ and the nega-
tive sign for the integral over surface S

£2+1
upward normal \72” = -\72 in the definition of the traction components.

is associated with using the

Once the boundary values for U?(;m) and TT(;m) are determined for

bounding interfaces 52 and S Eq. (1) can then be used to obtain

£2+1’

the displacement field at any point X, within layer 2. Expressions for

the full-space Green's functions withl constant material properties are
given in Appendix A of Apsel, et al. (1983) for two and three
dimensional wave propagation in elastic as well as acoustic media. This
completes the propagation step of the B!E formulation and what remains

is to impose the boundary interaction coupling.
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The boundary interaction coupling requires simultaneous satisfaction of
a tractionless free surface (interface 1) and continuous displacements
and tractions across each layer interface (2,3,...,N+1). The coupled
boundary integral equations arising from the zero traction conditions
along the free surface are obtained by evaluating Eq. (1) in volume v,
(layer 1) at a discrete number (q1) of observation points ;1 along
surface S and imposing the zero traction condition, T(y1) = 0,
(j=1,2,3), for all quadrature points y1 on surface S This leads to a
simultaneous set of 3q1 Fredholm integral equations of the second kind
for the same number of unknown displacement boundary values U;,
j=1,2,3, on surface 51, which are coupled to the unknown boundary

values on surface S2 through the integral over surface 52.

The coupled boundary integral equations arising from the continuity
conditions across each layer interface, SQ (£=2,3,...,N+1), are obtained

by evaluating Eq. (2) in volumes V!l‘l and VQ (layers 2-1 and £) at a

discrete number (qg) of observations x along common surface S, and

) £
imposing the natural boundary conditions of continuous displacements
and tractions, L}Q1 X = UQ(;Q) and T‘(;Zq(;z) = T“(Iz),

j=1,2,3, for ali quadrature pomts y2 on surface 52. This leads to a
simultaneous set of 6q’Z Fredholm integral ¢quations of the second kind
for the same number of unknown displacenent and traction boundary
values, U‘i and T%, j=1,2,3, on surface S,, which are coupled to the
unknown boundary values on surfaces 5-2_1 and S!ZH through the

integrals over surfaces S and S respectively. Note that when

2=2, the integrals mvolvu’rlmg1 TQ (yZ 11) are identically zero because of
the tractionless free surface condutlons Also, note that when 2=N+1,
the integrals over surface S!l+1 vanish by virtue of the radiation
conditions implicit in the Green's functions for the underlying

semi-infinite space.

when the entire discrete set of boundary and continuity conditions is
simulitaneously imposed, one obtains a coupled system of singular
Fredholm integral equations of the second kind for the unknown
boundary vaiues along all the interfaces, which can be written in matrix

notation as:

SGI-R-85-120

LA S Al YT So o SN ama Bl it Sa\ L s s At




PN S S A B i R R R RO oA A lir i a0 9 & % SN 400 d -~ by

15

(L,I{u} = [GH{T} - [H]{u} + ({F} (3)

in which [I2] is a di-diagonal matrix consisting of the 52 = 1/2 factors
obtained when specializing Eq. (2) to points on the interfaces; [G] and
[H] are the block tri-diagonal displacement and traction Green's
function matrices, respectively; {F} is the forcing vector consisting of
the direct source contributions at nodes only on the interfaces bounding
the source; and {U} and {T} are the unknown displacement and traction
boundary wvalue vectors, respectively, at all nodes in the model. The
singularities occur in [G] and [H] when quadrature point ;m
>

approaches observation point Xm in the self-interaction integrals along
each interface and in the propagation integrals between adjacent

interfaces for the special case of a layer pinchout.

The original BINTEQ solution to Eq. 3 was formulated to meet four
objectives:

1) optimize computational speed;

2) minimize memory requirements for efficient execution in
array processors and/or multi-user environments;

3) suppress spurious edge effects from the horizontal
finiteness of the numerical grid;

4) generate accurate complete sclutions including all possible
kinematic and dynamic effects;

To accommodate these objectives, the BINTEQ formulation proceeded by
recognizing that the singular self-interaction elements of matrices [G]
and [H] are identical in the limit to those for a flat reference plane
with the same upper and Ilower material properties as the interface
being considered. The rows of the self-interaction matrices for layer
interfaces are simple convolutional operators and are ideal for
preconditioning the original matrix equation. Therefore, by subtracting
the self-interaction matrices for flat planes referenced to each interface
from both sides of Eq. (3), the system of equations can be rewritten
as:
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(Cl{o};,, = [Al{e}, + {F} (4)

in which [C] is a block diagonal matrix containing the 1/2 factors from
['2] and the singular convolutional coefficients from the flat
self-interaction matrices; [AV] is the combined perturbation Green's
function matrix obtained by subtracting the flat self-interaction matrices
from {[G] and [H]; and {¢} is the combined wvector of unknown

displacement and traction boundary values {U} and {T}.

For models with small perturbations from the flat reference planes, the
preconditioned system of equations in Eq. (4) is more numerically
tractable and is well suited to satisfy all four objectives simultaneously.
The interaction singularities are analytically integrable and appear only
in the convolutional matrix [C] and the pinchout singularities (if any
exist) are also analytically integrable and appear only in perturbation
matrix (A]. If it could be guaranteed that the norm of the [A] matrix
is always less than the norm of the [C] matrix, then Eq. (4) could be
solved as accurately as desired using the following iterative Neumann
series solution technique with {@}o = 0 to initialize the series: first the
solution from iteration i, {¢}i, is recursively passed through the
right-hand-side of Eq. (4); then the right-hand-side is transformed
into the horizontal wavenumber domain using a discrete FFT aigorithm;
then an updated solution {¢}i+1 is immediately obtained by applying the
deconvolutional coefficients of the [C] matrix in the wavenumber
domain; and then the updated solution is transformed back into the

spatial domain for the next it:ration.

This procedure would satisfy the first objective by: (a) eliminating ali
matrix inversion operations; (b) saving the nonzero perturbation
submatrices of [AN] in the spatial domain and the nonzero
deconvolutional coefficients of [C] in the wavenumber domain for
recursive iterations and multiple sources; (c) reducing the number of
iterations of the precondition system relative to the original system; and
(d) using an array processor to rapidly calculate the nonzero elements
of {A] and [C], process all the required FFTs and perform all the

required complex matrix/vector multiplies.
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This procedure also satisfies the second objective by: (a) saving
nontrivial perturbation submatrices and deconvolutional coefficients on
disk if memory is insufficient; and (b) the largest in-core memory
requirement is governed merely by a single complex multiplication of a

submatrix times a bouncary value subwvector.

To understand how the third objective is satisfied, it is instructive to
consider the origins of the three possible types of spurious edge
effects. First, edge reflections from the deconvolutional operation on
the forcing vector {F} during the first iteration are possible for forcing
vectors without compact support, which would usually be the case
except possibly for structures with significant amounts of material
attenuation in the source layer (i.e., low Q values). Second, edge
reflections are similarly possible when updating the right-hand-side of
Eq. (4) if the perturbed Green's function integration operators in [A]
do not have compact support. Third, spatial wraparound effects are
possible if the convolutional coefficients are not sufficiently padded with
zeroes. It should also be pointed out that for interfaces which return
to their respective flat reference planes at both horizontal extremes,
the second type of edge reflections would require less care than the
first type. Therewith, the second objective is correspondingly satisfied
by: (a) extending the model somewhat at the horizontal extremes with
and tapering the forcing functions and perturbed integration operations
to zero; (b) tapering the convolutional coefficients; and (c) padding
the convolutional coefficients and the right-hand-sides with zeroes out
to twice the model size to totally prevent the circular deconvolution
process in the wavenumber domain from wrapping any arrivals back into
the model.

As mentioned previously, if one could guarantee that the norm of [A]
be less than the norm of [C], then the iterative Neumann series
solution technique wouid converge rapidly and uniformly to the exact
solution and the fourth objective would be met automatically. However,
this cannot always be guaranteed especiallty for large model
perturbations away from the flat reference planes. In Schuster's

iterative BIE solution technique, the Neumann series is guaranleed Lo
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be uniformly convergent because the full interaction submatrices are
inverted, leaving only t.e coupling between interfaces to control the
rate of convergence. As will be seen shortly, however, Schuster's
approach is extremely inefficient because of having to perform the
matrix inversions and furthermore, there are alternatives to the
Neumann series expansion which are guaranteed to be uniformly
convergent. The alternative adopted for the original BINTEQ formulation
is to expand the unknown boundary values in a series of basis vectors
with unknown coefficients as shown in Eq. (1) in Section 1.2. Each
basis wvector is generated recursively as described above for the
Neumann method and is made orthogonal to all previous basis vectors
using a modified Gram-Schmidt orthogonalization procedure. The
unknown basis vector coefficients are determined at a given iteration to
satisfy the boundary and continuity conditions implicit in Eq. (4) in a
least-squared error norm. To avoid numerical roundoff problems, an
automatic restart on the iteration loop is required whenever the
condition number of the least-squares system for the unknown
coefficients exceeds single precision accuracy. The iterated solution
contains all the possible arrivals (e.g., direct waves, multiples,
converted phases, head waves, diffractions and surface waves). Once
all the boundary values are determined at a given frequency, the field

at any location X . within any layer £ may be obtained by evaluating Eq.

2
(2). Time domain response would be obtained through discrete Fourier

synthesis.

The main probiem with this procedure is the requirement that the
perturbations of the irregular interfaces from the flat reference planes
be small at the center of the model and zero at the edges. Otherwise,
the preconditioning from subtracting the flat self-interaction matrices
would not improve the rate of convergence and the simple tapering
described above would be insufficient to suppress all the spurious edge
effects. Because the basis vectors are recursively dependent on the fl&*
jayer self-interaction solution ([C]-1{F}), the more iterations required
to satisfy the desired error tolerance, the slower the rate of
convergence. Therefore the rate of convergence is model dependent and

is too slow for practical applications using this original procedure.
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Improvements to the iterative procedure are currently being worked on

as described in the following section.
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2.2 IMPROVED BINTEQ FORMULATION

The preconditioning of the system of equations in Eq. (4) is physically
motivated and useful only for small perturbation problems with respect
to the flat reference planes. To solve the more desirable general
layered cases more efficiently, it was necessary to choose a more
reliable preconditioning technique and an iterative scheme that more

rapidly spans the solution space.

First, the flat layer reference planes are being eliminated and a more
robust technique is being implemented to suppress the spurious edge
reflections. The layers are padded at the horizontal extremes with thin
absorption zones in which the Q values for the layer are smoothly
tapered to a small waterlevel value at the edge of the model. This
introduces an extra exponential decay into the forcing functions and
Green's function integration operators which gradually reduces the

amplitudes of the boundary wvalues in the absorption zone. The

waterlevel value is set at each frequency such that any spurious edge

reflections are too small to contaminate the real signal.

The implementation of the absorption zones is portrayed in Figure 2 for
observation point \72 in the absorption zone and source point ;()m in the

original unpadded model. Defining Az to be the width of the absorption

zone (typically the greater of 20 samples or 10 percent of the model

width in that direction), the Q-values at position \‘;Jlj in the absorption

zone are given by

Qﬂj = Q (1-W2) cos%. 2 t W, (5)

in which "Wg“ is the waterlevel factor, s, controls the power of the

A
decay and ?t signifies the horizontal starting position of one of the

-3

absorption zones or im’ if Xm is within the absorption zone.

Therefore, the Q-values are smoothly tapered from a value of QQ at the

start of the absorption zone to WQQ at the end of the absorption zone.
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Flgure 2
Geometry and notation used for horizontal absorbtion zones.
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The differential amplitude reduction factors, RF, for the Green's
functions are then given by multiplying the N reduction factors for the

N cells between \7Q and \?)t:

(6)

for which w is the angular frequency and Ar is the slant distance along
each of the cells contributing to the reduction factor. The waterievel
factor, wg, is computed to make the reduction less than or equal to 0.1

for the last cell's contribution:

-1
W - ~20!2Q2In 0.1) + 1 (7)

wAX

If AX is different from AY for 3-D models, then WQ would be calculated

separately in the two horizontal directions. The power s, is computed

2
such that QQj = 0.1 (1-W2)Q2 at the mid-point of the absorption zone in
order to provide gradual reduction factors throughout the absorption

zZone.

This procedure to suppress edge reflections is similar to the work of

Cerjan, et al. (1985), with two exceptions. First, the constants in the

exponential reduction factors are based on physical quantities in the
present approach and do not alter the phase information. Second,
there is no need for an absorbing zone at the bottom of the models
because the radiation conditions are handied exactly by the Green's
functions for the underlying half-space layer. This new procedure is
in the process of being tested and some of the constants may need to

be altered for optimal suppression of the spurious edge reflections.
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Along with the new edge reflection suppression procedure, a new
iterative solution technique is being implemented and tested. The
largest problems with the original iterative solution technique were:
(1) using basically a perturbation method on models with moderate or
large perturbations in the interface depths with respect to the flat
reference planes; (2) less than optimal preconditioning of the matrix
equations for these non-perturbation problems; and (3) no facility to
pick optional search directions for the successive iterations. In the
new method, a conjugate gradient iterative solution technique is used
instead and the singular diagonal terms are used to precondition the

system of equations.

Numerically, the problem with the original method was that the search
directions became too similar at successive iterations causing
prohibitively slow convergence in many cases. This is the same type of
probiem encountered in using the method of steepest descent where
minimization in the gradient direction causes convergence back and
forth across the valley rather than more directly down the valley. The
conjugate gradient (CG) method provides a framework for picking the
search directions to minimize the residuals more rapidly while still

guaranteeing uniform convergence.
To derive the CG solution, Eq. (3) is recast into the simple form:
AX=8 (8)

in which A is a general, asymmetric complex matrix containing the
Green's function integration submatrices from [G] and [H] and the

e-factors from [I B is the forcing vector {F}, and X is the unknown

ok
boundary value wvector. The standard CG method is for symmetric
positive definite matrix equations. Before deriving the generalization to
the asymmetric case, the basic formulae and properties of the CG

solution will be discussed for the normal equations:
ATax = A'g (9)
SGI-R-85-120
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" in which superscript T indicates the complex-conjugate transpose .::\js
>t N

matrix. A good reference for the symmetric CG solution to Eq. (9) can t:-‘_-'.::
be found in Chapter 10 of Golub and van Loan (1983). The basic e
|

approach is to span the solution X by a set of mutually A-orthogonal | .g
search directions P_, (n=1,2,...) S }
n’' ey :ﬁ:

il

X = X +a P , X = best estimate, (10) '?.'r;

n n-1 n n o AN

o

T k;-.'._\

with the corresponding residual vector o = A (B-Axn) given by e
LA}

- } T _ AT e S

ro = oo a ATAP_, r_=A (B-AX ) ) ;_.:_._.:

To directly minimize the residual vector in Eq. (11), the coefficients o
»y oy

are found by requiring that (Pn, r‘n) = 0 to give
P r r r

a (n, n-1) - (n-1, n-1) 12) ce

(AP _,AP ) (AP_,AP ) se

el

NS

in which the second form is derived by using Eq. (14) and induction .:,2"‘-,
D

arguments and the notation (X,Y) denotes the inner product XTY. ::-:;_.-:j
What remains is how to define the optimum search directions that satisfy ~—r
the A-orthogonality condition: R
(APi, APj) =0 fori#]j (13) -~

To reduce the residuals as rapidly as possible, it is desirable to choose ":'_:‘
the search directions P_ to be the closest vectors to r__, that still )
satisfy Eq. (13). With no loss in generality, the search directions can
be written recursively as: RN
. RS

.:_-.'_

v‘::":

P " "1 B P o PR, (14) o
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Applying Eq. (13) with i = n, introducing P_ from Eq. (14) and A APj ‘:':.‘
from Eq. (11), using induction arguments for j<n and the orthogonality PO
of the residual wvectors (ri,r,.) = 0 for i # j directly gives the :}-::h
coefficients B : i&.
YA
RO
r r et
) B, = (n-1, n-1) ' (n=2,3,...). (15) S
(Fp-2r Tn-2) -

To optimize the rate of convergence, the system of equations in Eq. _
(11) is preconditioned by the diagonal elements and the initial estimate N

is derived by extrapolating the amplitude and phase information from

the solution at previous frequencies.

Note that this CG algorithm for the normal equations requires two
matrix-vector multiplications for each iteration because of the ATAPn
term. An additional drawback of solving the normal equations is that
the rate of convergence is governed by the square of the condition
number of the A-matri< instead of just the condition number with an

asymmetric algorithm.

The derivation of the asymmetric CG method is similar to the symmetric

case in Egs. (10) through (15) with a few basic changes. As before,

the solution is expanded in a set of A-orthogonal search directions Pn’

{(n=1,2,...) with coefficients o

X =X +0a P , X_ = best estimate, (16) ——
n n-1 nn o] o
". with residual vector r_ = B-AX_ given by e

- = ra.1 T % APn rfe B-AXo . (17)
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in this case the coefficients an are determined to minimize the residual

vector in Eq. (17) in a least-squared error sense to give:

a = (Apnz rn-12 . (18)
n (AP_, AP )

Without symmetry arguments, the search directions, Pn, depend on all

previous search directions to satisfy Eq. (13):

-1

n
Pn L + i§1 Binpi , P.l =r, . (19)

Now, applying Eq. (13) with i=n and j = 1,2,...,n~1 gives n-1

decoupied equations for the n-1 coefficients Bin at iteration n:

-ATh-1 APy =2, e (20)
(AP, AP)

B =

In

This asymmetric procedure has the distinct advantage of only one
matrix-vector multiplication per iteration (Ar'n_1 is obtained from Eq.
(19) in terms of the stored APi vectors, i = 1,...,n). Furthermore,
the rate of convergence is governed by the condition number of matrix
A instead of ATA, which results in a substantial improvement over the
normal equations. Again, as in the normal equations, the rate of
convergence and number of iterations is significantly improved by
preconditioning Eq. (10) by the diagonal elements and making good

extrapolations for XQ from previous frequencies.

The rate of convergence can slow down in the asymmetric algorithm

when the angle between o and APn is sufficiently small that the

incremental reductions in th1e residue from successive iterations is
negligible. If this condition ever occurs before desired convergence is
reached, the iteration loop is restarted with the latest approximation as
the initial estimate and the initial search direction in Eq. (19) is

modified for the restart to maximize (APn, r ). One method to

n-1
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modify the search directions is to replace L in Egs. (19) and (20) . \‘
with ATrn_1, which essentially switches the method to the symmetric \C.i
case for one iteration. Again, this procedure is still in testing and RS
other possibilities may be equally plausible. :-_’.’:{_‘:.'_’_'i
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2.3 COMPUTATIONAL COMPARISONS

The remainder of this section will discuss why BINTEQ represents the
optimal BIE formulation in terms of execution time to generate the exact
solution. A theoretically straightforward inversion to solve the linear
system in Eq. (2) would have been extremely computational inefficient
and numerically ill-conditioned because it would have entailed solving an
enormous singular system of (BN+3)q x (6N+3)q compiex equations for
the (BN+3)q unknown displacement and traction boundary values, with
"N" being the number of layers and "q" being the average number of

nodes on one interface. Any full inversion type approach would

require on the order of (6N+3)3q3 floating point operations per

frequency compared to about 144Nq2P for the BINTEQ solution

technique, with P being the number of iterations. For example, with

N=5 and g=256, the full inversion requires about 5x1011 operations per
frequency whereas the BINTEQ technique would require about ’lx109
operations with P=20 iterations per frequency. Furthermore, the overall Z-'_;f.'.;:.
cost of a BINTEQ calculation is controlled by the speed of repetitively .
muttiplying 3qx3q complex matrices times 3gx1 complex vectors and is q
ideally suited to execute with an array processor. Using an FPS
AP-120B array processor, this sample problem would take about 100 :
seconds per frequency, using BINTEQ, which is significantly faster :';:'.'_-.:f
than a typical eiastic finite difference type calculation with full volume .-» .
gridding. Compared to other BIE techniques and assuming adaptability -ﬂ
to achieve the high compute rates of the referenced array processor,
Ferguson's full inversion algorithm (1982) is estimated to take about 13
hours per frequency for this problem; Schuster's approach (1984) is l q
estimated to take about 4 hours per frequency for this problem based
on (1728N+432)q3 + 72Nq2P floating point operations per frequency

because of the N compiex 6gx6q interface interaction matrix inversions

and the complex 3gx3q free surface interaction matrix inversion.
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3.0 RESULTS

3.1 VALIDATION CALCULATIONS

Since the improved method is still in the final development and testing
stages, the validation exercises from the original BINTEQ method will be
described in this section. There are very few exact solutions available
for checking the algorithm. Therefore, the philosophy of the validation
stage has been to perform as many internal checks as possible while at
the same time comparing soiutions against those from established and

available algorithms.

An exhaustive set of internal checks of the BINTEQ algorithm have
been completed for the 2-D acoustic code: verification that the free
surface boundary concitions and the continuity conditions are being
satisfied for a wide range of problems; verification that the effects of
varying impedance contrasts from no contrast to a range of contrasts
are correct; verification that the lower limit of two nodal points per
wavelength produces the same results as finer sampling for the same
structure (although user may occasionally use finer sampling to avoid
spatial  aliasing with  structures having very steeply sloping
irregularities); wverification that there are no spurious edge reflections
contaminating solution for a wide range of conditions including very
high material attenuation (Q = 10) to almost no material attenuation (Q =
2000); wverification that extra padding at edge of model has no effect on

results; and numerous other verifications.

External validations have included: verification of all arrivals for
problems with exactly flat interfaces including head waves and Stoneley
waves against Sierra Geophysics' VESPATM algorithm (Apsel, 1982)
which simulates complete solutions in flat multilayered viscoelastic
structures; verification of geometrical arrival times and amplitudes for a
wide range of problems with irregular interfaces against Sierra

Geophysics' QUIK three-dimensional raytracing algorithm (Lundquist,

™
el al., 1987); and v rification of all arrivals including diffractions

against a limited set of available finite difference calculations.
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Figure 3 shows the model geometry for the flat layer comparison to the
exact VESPA solution. The source is located just beneath the interface
at a depth of 350 meters at an offset of 500 meters. Receivers are
located across the free surface from offset: of 600 out to 2100 meters.
The compressional velocities are 5 km/sec and 10 km/sec for layers 1
and 2; densities are 2.0 gm/cc and 2.5 gn/cc; quality factors (Q) are
100 and 1000; the layer thickness is 300 me‘ers. The simulations include
frequencies from 10 to 100 Hz. Figures 4 and 5 show the BINTEQ and
VESPA shot records, respectively for all 80 receivers and travel times
ranging from 0.0 to 0.8 seconds. The traces have been convolved with
a Ricker wavelet with a center frequency of 50 Hz. The BINTEQ
solution in Figure 4 has been scaled by a time ramp to amplify the late
arrivals and the 3-D VESPA solution in Figure 5 has been scaied by an
extra square root of time to approximately account for the differences
in 2-D and 3-D geometrical spreading. The first event is the direct
compressional arrival that is refracted up to the free surface through
the interface. The event moving out at the slower 5 km/sec velocity
starting at 0.7 seconds and group 21 is a non-geometrical arrival that
"tunnels" through the interface. The fact that BINTEQ is able to model
such non-geomelrical arrivals is quite encouraging for the method. The
next four events beginning at 0.18, 0.30, 0.42 and 0.54 are multiples of
order 1 through 4 reverberating in the top layer. The excellent
agreement with the exact VESPA solution lends considerable confidence

in the method.

Figures 6, 7, and 8 repeat the same validation study except that a 200
meter thick basin has been piaced on the interface as shown in Figure
6. This time the BINTEQ solution in Figure 7 is being compared
against the QUIK raytracing solution in Figure 8 which provides only
geometrical arrivals. All other parameters are the same as for the fiat
layer comparison. The agreement is excellent for the geometrical
arrivals modeled by the QUIK raytracing code. Notice how BINTEQ
gets continuous events including all defracted energy off the corners of
the basin whereas the raytracing code is unable to model the diffracted
energy. For example, the gap in the QUIK solution at 0.1 seconds and

groups 29 through 36 is where the smaller diffracted event through the

SGI-R-85-120

4 ‘at, I
e o fo b .
. P R
' P Sale

. e
A S




e R RN At R e e R R A T s Al &

- g
Eal e K W AP R r o i cne g o e a2 o) prr—y-
-

31

FLAT LAYER MODEL FOR BINTEQ/VESPA COMPARISON

o ? 1 L 2 1 2 'R R 4 ) - A 1 L
Free o, = 5000 m/sec f

200 - p, = 2.0 gm/cc receivers :
= surface Q, =100
@
® 400 * Source -
E
T o, = 10000 m/sec
G 600 p, = 2.5 gm/cc -
Ig Q,= 1000

800 o L

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
DISTANCE (meters)

Figure 3

Mode! geometry for the flat layer validation study between BINTEQ and VESPA shown in Figures 4 and 5.
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BASIN MODEL FOR BINTEQ/QUIK COMPARISON

0 ¥ - - 'S vl 9 2 2 " N N , .
FT o, = 5000 m/sec f
2007 surrfea?:e P, = 2.0 gm/icc receivers I
’E Q1 = 100
Q
T 400 4 * Source \ / _
E
£
E 600 r
]
° . a.,= 10000 m/sec
800 7 p, = 2.5 gm/ce i
Q,= 1000
1000 -
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
DISTANCE (meters)
Figure 6

Model geometry for the basin model comparison between BINTEQ and QUIK shown in Figures 7 and 8.
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left corner of the basin appears. The non-geometrical event that .
arrives early at the largest offsets in the BINTEQ solution is a head Sele,
wave traveling at the faster wvelocity of 10 km/sec along the bottom of AN

‘i
v

r
»

the basin. It is also interesting to note all the back scattered energy

.
[
e
LAt

bouncing around in the basin. g

:‘-‘l. .

.t

The model for the last set of validation studies shown in this section is

presented at the top of Figure 9. This more complex low-velocity

v,

_f'
o
U |
AN

3
.

()

wedge model was used by Koslov and Baysal (1982) to demonstrate the

accuracy of the finite difference technique against a physical model. In

the physical model, the low velocity wedge was submerged in water and

pinched out against a plexiglass plate. The scaled seismic velocities Aty
used in the comparison are 4 km/sec in the top layer (water), 2.3 _“:::f-.:f
km/sec in the second layer (wedge) and 6 km/sec in the underlying - f::}:
layer (plate). The source is located under the free surface at a depth .:_:;
of 100 meters and an offset of 4440 meters. Receivers are located just I""‘“

under the free surface at a depth of 50 meters at offsets ranging
between 750 to 5700 meters at an increment of 100 meters. The BINTEQ

shot record is shown at the same scale as the model in Figure 9 and R
includes all arrivais in the frequency range of 4 to 30 Hz. The
synthetic seismograms are shown as a function of time from 0.25 to 4.75
seconds so as to clip off the large impulse for the receivers near the
source at zero time. The most important events are identified by

numbers 1 through 17.

Event 1 is simply the direct arrival from the source plus the reflection
off the free surface. Events 2 through 6 represent arrivals interacting
with the wedge and the free surface: events 2, 4 and 6 are the
primary reflection and the first and second multiple reflections off the
wedge, respectively; event 3 represents the diffracted arrivals off
corner B; and event 5 represents a twice diffracted arrival off corner
B.

Events 7 through 12 represent arrivals involving primary reflections off

the plate: event 7 is the primary off the plate transmitting through

and diffracting off the wedge in the vicinity of corner C and traveling
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resolve the sharp corner of the wedge with too few samples. The e
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comparison was repeated with the 4th order finite difference algorithm -

of John Vidale at California Institute of Technology. The results from

LA

this comparison are shown in Figure 13 on the same scale as the
BINTEQ and QUIK shot records in Figures 11 and 12. The agreement RS
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with this finite difference simulation is quite spectacular.
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3.2 CALCULATION FOR AFGL MODELS

BRI N e T T s e T R T TR PR Tl SR AR PR S
P N S S AP I ND AP I PP S e e e et o et Tt A e e b hana  a p

The results from two sample calculations are presented in Figures 14
and 15 to show the effects of surface irregularities on the synthetic
seismograms. Both 2-D models represent simple layer over half-space
structures with a flat free surface and an irregular interface with
compressional velocities of 4 and 8 km/sec, densities of 2.0 and 3.4 -
gm/cc and material quality fa:tors of 50 and 1000 in the layer and the
underlying half-space, respectively. The simulations have been carried
out from 0 to 2.5 Hz and include all possible arrivals in the time
window of 0 to 50 seconds. The madeis are shown to the left of the
seismic sections with tick marks on the free surface denoting the
location of receivers at model distances from 8 km to 94.4 km. The
interfaces have been discretized at a sampling interval of 0.8 km for
128 points satisfying the minimum requirement of 2 sample points per
wavelength at the highest frequency of interest. Both figures show
true relative amplitudes except for a multiplicative scaling factor of the

hypocentral distance to the power unity for display purposes only.

The results in Figure 14 can be used to examine the effects of
irregularities on refracting horizons. A point isotropic source is
located at a horizontal model distance of 10 km at & depth of 11 km,
just one kilometer below the irregular interface. The results will be

discussed with the aide of lhe labelied arrivais. First one can follow

the direct arrival (A) as it moves out at the upper velocity of 4
km/sec. At about 20 km, arrival B emerges ahead of arrival A as it
travels almost horizontally at the higher wvelocity of 8 km/sec before
being refracted up to the free surface. 1\s arrival B passes through
the interface irregularities, it undergoes significant interference effects
destroying the coherence of the phase and causing some back scattered
energy (arrivals C). Then after passing through the irregularities, a
coherent arrival re-emerges with a moveout of 8 km/sec (arrival D).
The first multiple in the layer is arrival E and it is interesting to watch

it merge with the direct arrival A at distances beyond about 70 km.

Arrivals F and | represent back-scattered energy from the first multiple

off the interface irregularities. At distances beyond about 72 km, the

SGI-R-85-120
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BINTEQ2D-REV3. O
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Figure 14. BINTEQ simulation (0-2.5 hz) of the seismic section
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first multiple (arrival E) generates a head wave on the interface
(arrival G) with a moveout of 8 km/sec. This arrival appears to grow
beyond 90 km because of constructive interference from direct arrivals
scattered toward the free surface at a moveout of 4 km/sec (arrivals
originating between C and D). Arrivals H and K represent the next two
higher order multiples in the layer and arrivals J plus other unmarked
| : small arrivals represent more back scattered energy off the interface

irregularities from these higher multiples.

The results in Figure 15 can be used to understand the effects of wave
l propagation through a basin. Direct arrivals A and B have the same
interpretation as in Figure 14. In this figure, arrival C represents a
true head wave off the bottom of the basin and arrival D represents a
creeping wave correspcnding to the continuation of arrival D past the
L eastern rise of the basin. The sequence of arrivals E represent
diffractions off the rough corners of the discretely sampled western
slope of the basin (and are not present at lower frequency where
sampling is sufficient to emulate a smooth slope). As in the previous

example, arrival F represents back-scattered energy off the eastern

R x

rise of the basin. Arrivals G, H and | are the first multiple, its

AL
e

back-scattered energy off eastern slope and its head wave generated
after the eastern slope, analogous to arrivals E, F and G of the
I previous example. Arrivals J and K represent the next two higher
order multiptes and again the small back-scattered arrivals from these

multiples are too small to demarcate.

In conclusion, BINTEQ has been verified through an exhaustive series
of internal and external validation tests. Exact synthetic seismograms
were shown for two models to study the influence of interface
irregularities on seismic wave propagation in the earth. The most
important findings from these studies are: 1) the interference effects
observed from interface irregularities (arrivals C in Figure 2) may help
explain the phase incoherence observed in real data from head wave
energy along the Moho discontinuity; (2) significant back-scattered
energy is to be expected from interface irregularities (arrivals F, |, J

in Figure 14) and from basins (arrivals F, H in Figure 15); and (3) the
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appearance and disappearance of critically refracted energy (arrivals G
in Figure 14 and | in Figure 15) could easily have been misinterpreted

in real data as a head wave from a deeper interface.
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